Changeset 1647 in rotdif


Ignore:
Timestamp:
Feb 15, 2019, 2:20:23 PM (17 months ago)
Author:
yuexi
Message:

update

Files:
5 added
6 deleted
22 edited

Legend:

Unmodified
Added
Removed
  • appconfig.json

    r1527 r1647  
    11{
    2    "messaging" : {
    3       "zmqhostip" : "127.0.0.1",
    4       "tcphostip" : "127.0.0.1",
    5       "tcpport" : 30780,
    6       "udpport" : 30779,
    7       "wssport" : 80,
    8       "wsport" : 30777,
    9       "zmqport" : 30778,
    10       "udphostip" : "127.0.0.1"
    11    },
     2   "resourcedefault" : "local",
     3   "lockdir" : "/src/genapp/etc",
    124   "resources" : {
    135      "local" : ""
    146   },
     7   "messaging" : {
     8      "udpport" : 30779,
     9      "tcphostip" : "127.0.0.1",
     10      "tcptimeout" : "30",
     11      "udphostip" : "127.0.0.1",
     12      "wsport" : "30777",
     13      "wssport" : "80",
     14      "zmqhostip" : "127.0.0.1",
     15      "zmqport" : "30778",
     16      "tcpport" : "30780",
     17      "tcprport" : "30781"
     18   },
     19   "hostip" : "129.114.16.180",
    1520   "submitpolicy" : "login",
    16    "hostip" : "129.114.16.107",
    17    "lockdir" : "/src/genapp/etc",
    18    "hostname" : "rotdif.genapp.rocks",
    19    "resourcedefault" : "local"
     21   "hostname" : "rotdif.genapp.rocks"
    2022}
  • bin/indicator_chain.py

    r1529 r1647  
    44import re
    55
    6 def dock():
    7     for root, dirs, files in os.walk('./'):
    8         for name in files:
    9             filename = os.path.join(root, name)
    10             if '.txt' in filename:
    11                 exp_file = filename
    12     ##preprocess exp_file in multi-frequencies
     6def dock(relax_loc):
     7    #for root, dirs, files in os.walk('./'):
     8    #    for name in files:
     9    #        filename = os.path.join(root, name)
     10    #        if '.txt' in filename:   
     11    #            exp_file = filename
     12    exp_file = relax_loc
     13     ##preprocess exp_file in multi-frequencies
    1314    with open(exp_file) as in_f:
    1415        tmp_lists = in_f.read().splitlines()
  • bin/main_elm.py

    r1530 r1647  
    2525from math import exp, expm1, log10, log, log1p
    2626from subprocess import Popen, PIPE, STDOUT
     27from os.path import join
    2728
    2829def message_box(text,icon):
     
    160161    #save elm
    161162    elm_out = [str(base_dir) + "/" + 'ELM_prediction']   
     163    #save params
     164    with open(join(str(base_dir),"ELM_prediction")) as in_f:
     165        tmp = in_f.readlines()
     166    tmp[0]="Parameters\n"
     167    with open(join(str(base_dir),"ELM_params"),'w') as out_f:
     168        for items in tmp[:17]:
     169            out_f.write(items)
     170    elm_params = [str(base_dir)+"/"+"ELM_params"]
    162171    output_res[ 'elm_out' ] = elm_out
     172    output_res['elm_params'] = elm_params
    163173    print(json.dumps(output_res))
    164174
  • bin/main_elmdock.py

    r1531 r1647  
    4040from save_dock_elmdock import save_dock
    4141from indicator_chain import dock
     42from StringIO import StringIO
    4243
    4344if __name__ == "__main__":
    4445    color_list=[ '#1f77b4','#ff7f0e','#2ca02c','#d62728', '#9467bd',\
    4546'#8c564b', '#e377c2', '#7f7f7f', '#bcbd22','#17becf']
    46     to_dock = dock()
     47    json_variables = " "
     48    InitialDirectoryStr = os.path.abspath(os.path.dirname(sys.argv[0]))
     49    argv_io_string = StringIO(sys.argv[1])
     50    json_variables = json.load(argv_io_string)
     51    relax_location = json_variables['relax_location']
     52    relax_loc = relax_location[0]
     53    to_dock = dock(relax_loc)
    4754    output_res, base_dir, dyna_flag, elm_flag, elmdock_flag = rotdif(to_dock)
    48     exp_keys = exp_plot(color_list, dyna_flag, elm_flag, elmdock_flag)[1]
     55    exp_keys = exp_plot(color_list, dyna_flag, elm_flag, elmdock_flag,relax_loc)[1]
    4956    outputmd_arr_files = []
    5057    log_out = [str(base_dir) + "/" + 'elmdock_log.out']
    51    
    52     #ani_out = [str(base_dir) + "/"+ 'out_ani.py']
    53     #axi_out = [str(base_dir) + "/" + 'out_axial.py']
    54 
    5558    if dyna_flag == True:
    5659        output_res[ 'diso_plot' ] = diso_plot(color_list, exp_keys, to_dock, dyna_flag, elm_flag, elmdock_flag)
     
    6972        dock_pdb = [str(base_dir) + "/" + 'out_dock.pdb']
    7073        output_res[ 'pdb'] = dock_pdb
    71 
     74        view_pdb = str(base_dir) + "/" + 'out_dock.pdb'
     75        output_res['outputpdb'] = { "file" : view_pdb, "script" : "ribbon" }
     76       
     77        #user_pdb = [str(base_dir)+"/"+'diUb_AB.pdb']
    7278    output_res[ 'outputrotdif' ] = log_out
    73     #output_res[ 'ani_out' ] = ani_out
    74     #output_res[ 'axi_out' ] = axi_out
    75     #output_res[ 'exp_plot' ] = exp_plot(color_list, dyna_flag, elm_flag, elmdock_flag)[0]
    76     #output_res[ 'vec_plot' ] = vec_plot()
    77     #output_res[ 'chi2_plot' ] = chi2_plot()
    78     #output_res[ 'plot_2d' ] = plot_2d_3d(color_list, exp_keys)[0]
    79     #output_res[ 'plot_3d' ]  = plot_2d_3d(color_list, exp_keys)[1]
    80     #output_res[ 'iso_plot' ] = iso_plot(color_list,exp_keys, dyna_flag, elm_flag, elmdock_flag)
    81     #output_res[ 'axi_plot' ] = axi_plot(color_list,exp_keys, dyna_flag, elm_flag, elmdock_flag)
    82     #output_res[ 'ani_plot' ] = ani_plot(color_list,exp_keys, dyna_flag, elm_flag, elmdock_flag)
    8379    print (json.dumps(output_res))
  • bin/main_rotdif.py

    r1534 r1647  
    4040from save_dock import save_dock
    4141from indicator_chain import dock
     42from StringIO import StringIO
    4243
    4344if __name__ == "__main__":
    4445    color_list=[ '#1f77b4','#ff7f0e','#2ca02c','#d62728', '#9467bd',\
    4546'#8c564b', '#e377c2', '#7f7f7f', '#bcbd22','#17becf']
    46     to_dock = dock()
     47    json_variables = " "
     48    InitialDirectoryStr = os.path.abspath(os.path.dirname(sys.argv[0]))
     49    argv_io_string = StringIO(sys.argv[1])
     50    json_variables = json.load(argv_io_string)
     51    relax_location = json_variables['relax_location']
     52    relax_loc = relax_location[0]
     53    to_dock = dock(relax_loc)
    4754    output_res, base_dir, dyna_flag, elm_flag, elmdock_flag = rotdif(to_dock)
    48     exp_keys = exp_plot(color_list, dyna_flag, elm_flag, elmdock_flag)[1]
     55    exp_graph,exp_keys,exp_resi,dyna_resi = exp_plot(color_list, dyna_flag, elm_flag, elmdock_flag,relax_loc)
    4956    outputmd_arr_files = []
    5057    log_out = [str(base_dir) + "/" + 'rotdif_log.out']
     
    6875        dock_pdb = [str(base_dir) + "/" + 'out_dock.pdb']
    6976        output_res[ 'pdb'] = dock_pdb
     77        output_res['outputpdb'] = dock_pdb
    7078
     79    #get residule numbers for the vector plot
    7180    output_res[ 'outputrotdif' ] = log_out
    7281    output_res[ 'ani_out' ] = ani_out
    7382    output_res[ 'axi_out' ] = axi_out
    74     output_res[ 'exp_plot' ] = exp_plot(color_list, dyna_flag, elm_flag, elmdock_flag)[0]
    75     output_res[ 'vec_plot' ] = vec_plot()
     83    output_res[ 'exp_plot' ] = exp_graph
     84    output_res[ 'vec_plot' ] = vec_plot(exp_resi)
    7685    output_res[ 'chi2_plot' ] = chi2_plot()
    7786    output_res[ 'plot_2d' ] = plot_2d_3d(color_list, exp_keys)[0]
    7887    output_res[ 'plot_3d' ]  = plot_2d_3d(color_list, exp_keys)[1]
    79     output_res[ 'iso_plot' ] = iso_plot(color_list,exp_keys, dyna_flag, elm_flag, elmdock_flag)
    80     output_res[ 'axi_plot' ] = axi_plot(color_list,exp_keys, dyna_flag, elm_flag, elmdock_flag)
    81     output_res[ 'ani_plot' ] = ani_plot(color_list,exp_keys, dyna_flag, elm_flag, elmdock_flag)
     88    output_res[ 'iso_plot' ] = iso_plot(exp_resi, color_list,exp_keys, dyna_flag, elm_flag, elmdock_flag)
     89    output_res[ 'axi_plot' ] = axi_plot(exp_resi, color_list,exp_keys, dyna_flag, elm_flag, elmdock_flag)
     90    output_res[ 'ani_plot' ] = ani_plot(exp_resi, color_list,exp_keys, dyna_flag, elm_flag, elmdock_flag)
    8291    print (json.dumps(output_res))
  • bin/plot_ani.py

    r1535 r1647  
    33from preprocess_split import split_data
    44import statistics as stat
    5 def ani_plot(color_list, exp_keys, dyna_flag, elm_flag, elmdock_flag):
     5def ani_plot(exp_resi, color_list, exp_keys, dyna_flag, elm_flag, elmdock_flag):
    66    ani_output = split_data(dyna_flag, elm_flag, elmdock_flag)[2]
    77    ani_block = []
    8     for i in range(len(ani_output[0])):
     8    ind_a = []
     9    to_index = ani_output[0][0]
     10    for ii in range(len(exp_resi)):
     11        ind_a.append(to_index.index(int(exp_resi[ii])))
     12   
     13    to_loop = len(ani_output[0])
     14
     15    for i in range(to_loop):
     16        ani_output[0][i] = [ani_output[0][i][jj] for jj in ind_a]
     17        ani_output[1][i] = [ani_output[1][i][jj] for jj in ind_a]
     18        ani_output[2][i] = [ani_output[2][i][jj] for jj in ind_a]
     19        ani_output[3][i] = [ani_output[3][i][jj] for jj in ind_a]   
     20
    921        err_dev = stat.stdev(ani_output[3][i])
    1022        dif = list(map(operator.sub,ani_output[2][i],ani_output[1][i]))
     
    1325          "x": ani_output[1][i],
    1426          "y": ani_output[2][i],
     27          "text": ["residue "+ str(int(items)) for items in ani_output[0][i]],
    1528          "error_x": {
    1629            "array" : ani_output[3][i],
  • bin/plot_axi.py

    r1536 r1647  
    33from preprocess_split import split_data
    44import statistics as stat
    5 def axi_plot(color_list, exp_keys, dyna_flag, elm_flag, elmdock_flag):
     5def axi_plot(exp_resi,color_list, exp_keys, dyna_flag, elm_flag, elmdock_flag):
    66    axi_output = split_data(dyna_flag, elm_flag, elmdock_flag)[1]
    77    axi_block = []
    8     for i in range(len(axi_output[0])):
     8
     9    ind_a = []
     10    to_index = axi_output[0][0]
     11    for ii in range(len(exp_resi)):
     12        ind_a.append(to_index.index(int(exp_resi[ii])))
     13   
     14    to_loop = len(axi_output[0])
     15
     16    for i in range(to_loop):
     17        axi_output[0][i] = [axi_output[0][i][jj] for jj in ind_a]
     18        axi_output[1][i] = [axi_output[1][i][jj] for jj in ind_a]
     19        axi_output[2][i] = [axi_output[2][i][jj] for jj in ind_a]
     20        axi_output[3][i] = [axi_output[3][i][jj] for jj in ind_a]   
     21
    922        err_dev = stat.stdev(axi_output[3][i])
    1023        dif = list(map(operator.sub,axi_output[2][i],axi_output[1][i]))
     
    1326          "x": axi_output[1][i],
    1427          "y": axi_output[2][i],
     28          "text": ["residue "+ str(int(items)) for items in axi_output[0][i]],
    1529          "error_x": {
    1630            "array" : axi_output[3][i],
  • bin/plot_exp.py

    r1545 r1647  
    77from preprocess_split import split_data
    88
    9 def exp_plot(color_list, dyna_flag, elm_flag, elmdock_flag):
     9def exp_plot(color_list, dyna_flag, elm_flag, elmdock_flag, relax_loc):
    1010    iso_output = split_data(dyna_flag, elm_flag, elmdock_flag)[0]
    11     for root, dirs, files in os.walk('./'):
    12         for name in files:
    13             filename = os.path.join(root, name)
    14             if '.txt' in filename:
    15                 exp_file = filename
     11    exp_file = relax_loc
     12#    for root, dirs, files in os.walk('./'):
     13#        for name in files:
     14#            filename = os.path.join(root, name)
     15#            if '.txt' in filename:
     16#                exp_file = filename
    1617    ##preprocess exp_file in multi-frequencies
    1718    with open(exp_file) as in_f:
     
    2425columns = ["residue","chain","atom 1","atom 2","magnet","T1","T1 error","T2","T2 error","NOE","NOE error"])
    2526    resi = list(exp_pd["residue"])
    26     digi_resi = []
     27    exp_resi = []
     28    dyna_resi = []
    2729    #eliminate * in residue number
    2830    for list_elem in resi:
    29         digi_resi.extend(re.findall("\d+", list_elem))
    30     digi_resi = [int(elem) for elem in digi_resi]
    31     exp_pd["residue"] = digi_resi
     31        if("%" not in list_elem):
     32            dyna_resi.extend(re.findall("\d+", list_elem))
     33            if("*" not in list_elem):
     34                exp_resi.append(list_elem)
     35    #digi_resi = [int(elem) for elem in digi_resi]
     36    exp_pd = exp_pd[[x in dyna_resi for x in exp_pd["residue"]]]
     37    tmp_resi = [int(items) for items in list(exp_pd["residue"])]
     38    exp_pd['residue'] = tmp_resi
    3239    sort_exp = exp_pd.sort_values(['magnet', 'residue'], ascending=[True, True])
    3340    freq_set = set(list(exp_pd["magnet"]))
     
    331338        sys.stderr.write("More than 2 chains are not supported")
    332339
    333     return exp_plotly,exp_keys
     340    return exp_plotly,exp_keys,exp_resi,dyna_resi
  • bin/plot_exp_elmdock.py

    r1548 r1647  
    44import numpy
    55import os
     6import sys
    67#import our functions
    78from elmdock_split import split_data
    89
    9 def exp_plot(color_list, dyna_flag, elm_flag, elmdock_flag):
     10def exp_plot(color_list, dyna_flag, elm_flag, elmdock_flag, relax_loc):
    1011    iso_output = split_data(dyna_flag, elm_flag, elmdock_flag)[0]
    11     for root, dirs, files in os.walk('./'):
    12         for name in files:
    13             filename = os.path.join(root, name)
    14             if '.txt' in filename:
    15                 exp_file = filename
     12    #for root, dirs, files in os.walk('./'):
     13    #    for name in files:
     14    #        filename = os.path.join(root, name)
     15    #        if '.txt' in filename:
     16    #            exp_file = filename
     17    exp_file = relax_loc
    1618    ##preprocess exp_file in multi-frequencies
    1719    with open(exp_file) as in_f:
  • bin/plot_iso.py

    r1537 r1647  
    44import statistics as stat
    55
    6 def iso_plot(color_list, exp_keys, dyna_flag, elm_flag, elmdock_flag):
     6def iso_plot(exp_resi,color_list, exp_keys, dyna_flag, elm_flag, elmdock_flag):
    77    iso_output = split_data(dyna_flag, elm_flag, elmdock_flag)[0]
    88    iso_block = []
    9     for i in range(len(iso_output[0])):
     9    ind_a = []
     10    to_index = iso_output[0][0]
     11    for ii in range(len(exp_resi)):
     12        ind_a.append(to_index.index(int(exp_resi[ii])))
     13   
     14    to_loop = len(iso_output[0])
     15
     16    for i in range(to_loop):
     17        iso_output[0][i] = [iso_output[0][i][jj] for jj in ind_a]
     18        iso_output[1][i] = [iso_output[1][i][jj] for jj in ind_a]
     19        iso_output[2][i] = [iso_output[2][i][jj] for jj in ind_a]
     20        iso_output[3][i] = [iso_output[3][i][jj] for jj in ind_a]       
     21
    1022        err_dev = stat.stdev(iso_output[3][i])
    1123        dif = list(map(operator.sub,iso_output[2][i],iso_output[1][i]))
     
    1426          "x": iso_output[1][i],
    1527          "y": iso_output[2][i],
     28          "text": ["residue "+ str(int(items)) for items in iso_output[0][i]],
    1629          "error_x": {
    1730            "array" : iso_output[3][i],
  • bin/plot_vec.py

    r1538 r1647  
    11#!/usr/bin/python
    2 def vec_plot():
     2def vec_plot(resid):
    33    bond_vec = []
    44    with open('bond_vector') as in_f:
     
    2222        bond_z.append(break_vec[1])
    2323
     24    label = []
     25    break_1 = ""
     26    for ii in range(len(resid)):
     27        mylab = "residue " + str(int(resid[ii]))
     28        label.append(mylab)
     29        label.append(break_1)
     30        label.append(break_1)
     31
     32    #assert(len(label) == len(bond_x))
     33
    2434    vec_plotly = {
    2535    "data":[
     
    3040    "y": bond_y,
    3141    "z": bond_z,
     42    "text": label,
    3243    "line": {
    3344        "width": 6,
  • bin/preprocess_dyna_rho.py

    r1547 r1647  
    1818    output_pd = pd.DataFrame(data = data_list, columns = col_name)
    1919    resi = list(output_pd["residue"])
    20     digi_resi = []
    21     #eliminate * in residue number
     20    dyna_resi = []
     21    exp_resi = []
     22    ori_resi = []
     23    #deal with comment symbols in residue number
    2224    for list_elem in resi:
    23         digi_resi.extend(re.findall("\d+", list_elem))
    24     digi_resi = [int(elem) for elem in digi_resi]
    25     output_pd["residue"] = digi_resi
    26     sort_output = output_pd.sort_values(['freq', 'residue'], ascending=[True, True])
     25        if list_elem.startswith("%"):
     26            pass
     27        elif list_elem.startswith("*"):
     28            dyna_resi.append(list_elem[1:])
     29            exp_resi.append(list_elem)
     30        else:
     31            dyna_resi.append(list_elem)
     32            exp_resi.append(list_elem)
     33    ori_resi = dyna_resi
     34
     35    if dat_type == "exp":
     36        output_pd = output_pd[[x in exp_resi for x in ori_resi]]
     37    else:
     38        output_pd = output_pd[[x in dyna_resi for x in ori_resi]]
     39   
     40    resi_pd = output_pd['residue']
     41    int_resi = [int(items) for items in resi_pd]
     42    output_pd['residue'] = int_resi
     43    sort_output = output_pd.sort_values(['freq','chain','residue'], ascending=[True,True,True])
    2744    freq_set = set(list(sort_output["freq"]))
    2845    chain_set = set(list(sort_output["chain"]))
     
    4259        if dat_type =="exp":
    4360            for items in output_keys:
    44                 rho_resi_list = [float(ele) for ele in list(output_dict[items]["residue"])]   
     61                rho_resi_list = [int(ele) for ele in list(output_dict[items]["residue"])]   
    4562                rho_exp_list = [float(ele) for ele in list(output_dict[items]["rho_exp"])]
    4663                rho_pred_list = [float(ele) for ele in list(output_dict[items]["rho_pred"])]
     
    5370        elif dat_type =="dyna":
    5471        #all frequencies have the same dyanmics data
    55             resi_list = [float(ele) for ele in list(output_dict[output_keys[0]]["residue"])]
     72            resi_list = [int(ele) for ele in list(output_dict[output_keys[0]]["residue"])]
    5673            s2_list = [float(ele) for ele in list(output_dict[output_keys[0]]["s2"])]
    5774            tau_loc_list = [float(ele) for ele in list(output_dict[output_keys[0]]["tau_loc"])]
     
    7592        if dat_type =="exp":
    7693            for items in output_keys:
    77                 rho_resi_list = [float(ele) for ele in list(output_dict[items]["residue"])]   
     94                rho_resi_list = [int(ele) for ele in list(output_dict[output_keys[0]]["residue"])]   
    7895                rho_exp_list = [float(ele) for ele in list(output_dict[items]["rho_exp"])]
    7996                rho_pred_list = [float(ele) for ele in list(output_dict[items]["rho_pred"])]
     
    87104        #different chains have different dyanmics data
    88105            for items in output_keys:
    89                 resi_list = [float(ele) for ele in list(output_dict[output_keys[0]]["residue"])]
     106                resi_list = [int(ele) for ele in list(output_dict[output_keys[0]]["residue"])]
    90107                s2_list = [float(ele) for ele in list(output_dict[items]["s2"])]
    91108                tau_loc_list = [float(ele) for ele in list(output_dict[items]["tau_loc"])]
  • bin/run_rotdif_elmdock.py

    r1549 r1647  
    117117    path_to_live_log = str(base_dir) + "/" + 'elmdock_log.out'
    118118    error_string_md = ''
    119     timeout = 4 # seconds
     119    timeout = 30 # seconds
    120120
    121121    while True:
  • directives.json

    r1524 r1647  
    1 # this is a project directives file
    2 # comments are ok but must start the line in this JSON
    31{
    4   "title"                     : "ROTDIF",
    5 
    6 # the application name should not contain any special characters
    7   "application"               : "rotdif",
    8 
    9   "footer"                    : "Test footer",
    10   "footersize"                : "50px",
    11   "version"                   : "- Web",
    12 # choose your target languages to generate currently from [ "html5", "qt3", "qt4", "qt5", "java" ]
    13   "languages"                 : [ "html5"  ],
    14 
    15   "executable_path"           :
    16                                 {
    17                                  "html5" : "/opt/genapp/rotdif/bin",
    18                                  "qt3"   : "/opt/genapp/rotdif/bin",
    19                                  "qt4"   : "/opt/genapp/rotdif/bin",
    20                                  "qt5"   : "/opt/genapp/rotdif/bin",
    21                                  "java"  : "/opt/genapp/rotdif/bin"
    22                                 },
    23 
    24   "docroot"                   :
    25                                 {
    26                                  "html5" : "/var/www/html",
    27                                  "qt3"   : "/opt/genapp/rotdif/tmp",
    28                                  "qt4"   : "/opt/genapp/rotdif/tmp",
    29                                  "qt5"   : "/opt/genapp/rotdif/tmp",
    30                                  "java"  : "/opt/genapp/rotdif/tmp"
    31                                 },
    32 # these are helper editor and pdb viewer applications and can be changed
    33   "helper"                    : {
    34                                  "txt" :"vi",
    35                                  "pdb" :"rasmol"
    36                                 },
    37 # only uncomment this to have a "docs" tab in html5 which hyperlinks to your self created docs directory
    38 #  "docsbaseurl"               : "docs",
    39 
    40 # global hover help texts
    41   "help"                      : {
    42                                   "user_config" : "this is user config help"
    43                                  ,"register"    : "this is register help"
    44                                  ,"jobs"        : "this is jobs help"
    45                                  ,"files"       : "this is file help"
    46                                  ,"feedback"    : "this is feedback help"
    47                                  ,"docs"        : "this is docs help"
    48                                  ,"login"       : "this is login help"
    49                                  ,"logoff"      : "this is logoff help"
    50                                  ,"help"        : "this is help help"
    51                                  ,"project"     : "this is project help"
    52                                  ,"menu"        : "this is menu help"
    53                                  ,"submit"      : "this is help for the submit button"
    54                                  ,"reset"       : "this is help for the reset to default values button"
    55                                  ,"apptitle"    : "this is application help"
    56                                 },
    57 
    58   "textarea"                 : {
    59       "label"           : "Report:"
    60       ,"default"        : "header3"
    61       ,"verticalalign"  : "top"
    62       ,"cols"           : "110"
    63 # define rows to stop autosize
    64       ,"rows"           : "10"
    65       ,"help"           : "general textarea help"
    66   },
    67 
    68 #"usercolors" : "true",
    69 
    70 "style" : {
    71         "sidebarwidth"        : "280px"
    72         ,"sidebartextalign"   : "left"
    73         ,"sidebarleftpadding" : "10px"
    74         #,"backgroundimage"    : "Univ_Copenhagen11.jpg"
    75     },
    76 
    77 # "blue" colors
    78   "text_color_rgb"            : "220,210,210",
    79   "error_color_rgb"           : "255,0,0",
    80   "background_color_rgb"      : "0,0,95",
    81   "select_color_rgb"          : "200,128,0",
    82   "button_color_rgb"          : "228,255,250",
    83   "button_color_hex"          : "E4FFFA",
    84   "button_g_color_rgb"        : "128,170,150",
    85   "button_g_color_hex"        : "80AA06",
    86   "button_hover_color_rgb"    : "255,255,255",
    87   "button_hover_color_hex"    : "FFFFFF",
    88   "button_hover_g_color_rgb"  : "228,255,250",
    89   "button_hover_g_color_hex"  : "E4FFFA",
    90   "header1_color"             : "228,255,250",
    91   "header2_color"             : "228,255,250",
    92   "header3_color"             : "228,255,250",
    93   "header4_color"             : "228,255,250",
    94   "help_background_color_rgb" : "0,0,75",
    95   "help_text_color_rgb"       : "240,240,210"
    96 
    97 # paper colors (useful for screenshots for publications)
    98 #  "text_color_rgb"            : "0,0,0",
    99 #  "error_color_rgb"           : "255,0,0",
    100 #  "background_color_rgb"      : "255,255,255",
    101 #  "select_color_rgb"          : "200,128,0",
    102 #  "button_color_rgb"          : "192,192,255",
    103 #  "button_color_hex"          : "C0C0FF",
    104 #  "button_g_color_rgb"        : "255,255,255",
    105 #  "button_g_color_hex"        : "FFFFFF",
    106 #  "button_hover_color_rgb"    : "192,192,192",
    107 #  "button_hover_color_hex"    : "C0C0C0",
    108 #  "button_hover_g_color_rgb"  : "255,255,255",
    109 #  "button_hover_g_color_hex"  : "FFFFFF",
    110 #  "header1_color"             : "0,0,128",
    111 #  "header2_color"             : "0,0,128",
    112 #  "header3_color"             : "0,0,128",
    113 #  "header4_color"             : "0,0,128",
    114 #  "help_background_color_rgb" : "230,230,230",
    115 #  "help_text_color_rgb"       : "0,0,0"
    116 
    117 # debugging controls
    118 
    119   ,"debug"                   : {
    120 #         ,"jobmonitor"        : "true"
    121 #         ,"pid"               : "true"
    122 #         ,"cancel"            : "true"
    123 #         ,"license"           : "true"
    124 #         ,"help"              : "true"
    125 #         ,"_tree"             : "true"
    126 #         ,"valuen"            : "true"
    127 #        ,"valuenx"            : "true"
    128 #        ,"sync"               : "true"
    129 #        ,"spec"               : "true"
    130 #        ,"fp"                 : "true"
    131 #        ,"plottics"           : "true"
    132 #        ,"plottwod"           : "true"
    133 #        ,"data"               : "true"
    134 #        ,"textarea"           : "true"
    135 #        ,"values"             : "true"
    136 #        ,"repeat"             : "true"
    137 #        ,"repeathtml"         : "true"
    138 #        ,"hide"               : "true"
    139 #        ,"repeatdeps"         : "true"
    140 #        ,"repeatdepsobj"      : "true"
    141 #        ,"repeatlb"           : "true"
    142 #        ,"repeatcb"           : "true"
    143 #        ,"repeatinit"         : "true"
    144 #        ,"pull"               : "true"
    145 #        ,"ws"                 : "true"
    146 #        ,"msg"                : "true"
    147 #        ,"job"                : "true"
    148 #        ,"fc"                 : "true"
    149 #        ,"jc"                 : "true"
    150 #        ,"project"            : "true"
    151 #        ,"basemylog"          : "true"
    152 #        ,"event"              : "true"
    153 #        ,"altfile"            : "true"
    154 #        ,"valid"              : "true"
    155 #        ,"jsmol"              : "true"
    156    }
    157 
    158 #  uncomment to enable "captcha" human validation upon registration for html5/php target
    159 #  ,"enablecaptcha"                  : "true"
    160 
    161 #  uncomment to enable "login/register" splash entry for html5/php target
    162 #  ,"usesplash"                  : "true"
    163 
    164 # only uncomment if you have configured secure web sockets in your webserver
    165 #  ,"usewss"                  : "true"
    166 
    167 # the following are currently only meaningful for "html5" language
    168   ,"appconfig"                 : "/opt/genapp/rotdif/appconfig.json"
    169 
    170 # if you have a 32 bit mongo system "html5", comment this
    171   ,"mongojournal"               : "true"
    172 
    173 # optionally define a log directory for "html5" language
    174   ,"logdirectory"               : "_log"
    175    ,"usews" : "true"
     2   "help_text_color_rgb" : "240,240,210",
     3   "logdirectory" : "_log",
     4   "button_color_rgb" : "200,128,0",
     5   "mongo" : {},
     6   "debug" : {},
     7   "footersize" : "50px",
     8   "appconfig" : "/opt/genapp/rotdif/appconfig.json",
     9   "button_g_color_rgb" : "200,128,0",
     10   "button_hover_color_hex" : "FFFFFF",
     11   "help_background_color_rgb" : "0,0,75",
     12   "helper" : {
     13      "pdb" : "rasmol",
     14      "txt" : "vi"
     15   },
     16   "header1_color" : "228,255,250",
     17   "button_hover_color_rgb" : "255,255,255",
     18   "textarea" : {
     19      "verticalalign" : "top",
     20      "help" : "general textarea help",
     21      "default" : "header3",
     22      "label" : "Report:",
     23      "cols" : "110",
     24      "rows" : "10"
     25   },
     26   "header2_color" : "228,255,250",
     27   "version" : "- Web",
     28   "executable_path" : {
     29      "qt5" : "/opt/genapp/rotdif/bin",
     30      "qt3" : "/opt/genapp/rotdif/bin",
     31      "qt4" : "/opt/genapp/rotdif/bin",
     32      "java" : "/opt/genapp/rotdif/bin",
     33      "html5" : "/opt/genapp/rotdif/bin"
     34   },
     35   "button_hover_g_color_hex" : "FFFFFF",
     36   "header4_color" : "C88000",
     37   "text_color_rgb" : "0,0,0",
     38   "languages" : [
     39      "html5"
     40   ],
     41   "select_color_rgb" : "2E8B57",
     42   "style" : {
     43      "sidebartextalign" : "left",
     44      "sidebarleftpadding" : "10px",
     45      "sidebarwidth" : "280px"
     46   },
     47   "background_color_rgb" : "255,255,255",
     48   "button_g_color_hex" : "80AA06",
     49   "docroot" : {
     50      "qt3" : "/opt/genapp/rotdif/tmp",
     51      "qt5" : "/opt/genapp/rotdif/tmp",
     52      "qt4" : "/opt/genapp/rotdif/tmp",
     53      "html5" : "/var/www/html",
     54      "java" : "/opt/genapp/rotdif/tmp"
     55   },
     56   "header3_color" : "C88000",
     57   "button_color_hex" : "C88000",
     58   "application" : "rotdif",
     59   "error_color_rgb" : "255,0,0",
     60   "button_hover_g_color_rgb" : "C88000",
     61   "footer" : "ROTDIF-Web@2019",
     62   "title" : "ROTDIF",
     63   "usews" : "true",
     64   "mongojournal" : "true",
     65   "css" : "custom.css",
     66   "usesplash": "true",
     67   "splashdocs":"true"
    17668}
  • files/aboutrotdif.html

    r1471 r1647  
    11 <div style="width:800px;margin-left:100px">
    2     <p><span style="font-weight:bold;font-size:20pt;font-family:'Times New Roman'">Instructions</span></p>
     2    <p><span style="font-weight:bold;font-size:20pt;font-family:'Avenir'">Instructions</span></p>
    33
    44    <p style="text-align:left;margin-bottom:0.000000pt;margin-top:0.000000pt"></p>
    55   
    6     <p style="font-size:16pt;font-family:'Times New Roman'">
     6    <p style="font-size:16pt;font-family:'Avenir'">
    77    <i>RotDif</i> requires 2 input files:</p>
    88
    99    <p style="text-align:justify;margin-bottom:0.000000pt;margin-top:0.000000pt">
    1010   
    11     <span style="font-size:16pt;font-family:'Times New Roman'">
     11    <span style="font-size:16pt;font-family:'Avenir'">
    1212
    1313      <p>
     
    2727        <hr>
    2828
    29          <p><span style="font-weight:bold;font-size:20pt;font-family:'Times New Roman'">Example set of files</span></p>
     29         <p><span style="font-weight:bold;font-size:20pt;font-family:'Avenir'">Example set of files</span></p>
    3030       
    3131        <p> Relaxation files</p>
  • files/acknowledgements_my.html

    r1471 r1647  
    11<div style="width:1000px;margin-left:100px" >
    2 <p><span style="font-weight:bold;font-size:20pt;font-family:'Times New Roman'">Acknowledgments
     2<p><span style="font-weight:bold;font-size:20pt;font-family:'Avenir'">Acknowledgments
    33</span></p>
    4 
    5 
     4<div class="">
     5  <img src="https://drive.google.com/uc?id=1VUO5ds0TfXGZ8ARc6dUF90GzuGk0yUTn" width="400" height="200"></img>
     6  <img src="https://drive.google.com/uc?id=1MCe82b_VyJP7mFB_h_4fYFyCD8eKABmq" width="200" height="200"></img>
     7</div>
     8 
    69<p class="_normal" style=
    710"text-align:left;margin-bottom:8.000000pt;margin-top:0.000000pt"
    811awml:style="_Normal"><span style=
    9 "font-size:16pt;font-family:'Times New Roman'">This website was
    10 made possible by:</span></p>
    11 <p class="_normal" style=
    12 "text-align:center;margin-bottom:8.000000pt;margin-top:0.000000pt"
    13 awml:style="_Normal"><img style="width:125.0mm"
    14 src="" title=""
    15 alt="" align=""></p>
    16 <p class="_normal" style=
    17 "text-align:center;margin-bottom:8.000000pt;margin-top:0.000000pt"
    18 awml:style="_Normal"><a href="http://www.nsf.gov/"><span style=
    19 "font-size:18pt;font-family:'Times New Roman';text-decoration:underline;color:#0000ff">
    20 http://www.nsf.gov/</span></a></p>
    21 <p class="_normal" style=
    22 "text-align:center;margin-bottom:8.000000pt;margin-top:0.000000pt"
    23 awml:style="_Normal"><img style="width:75.5mm"
    24 src=""
    25 title="" alt="" align=""></p>
    26 <p class="_normal" style=
    27 "text-align:center;margin-bottom:8.000000pt;margin-top:0.000000pt"
    28 awml:style="_Normal"><a href="http://www.ccpsas.org/"><span style=
    29 "font-size:18pt;font-family:'Times New Roman';text-decoration:underline;color:#0000ff">
    30 http://www.ccpsas.org/</span></a></p>
    31 <p></p>
    32 <p class="_normal" style=
    33 "text-align:justify;margin-bottom:8.000000pt;margin-top:0.000000pt"
    34 awml:style="_Normal"><span style="font-size:16pt;font-family:'Times New Roman'">Integration of
    35 the</span><span style=
    36 "font-style:italic;font-size:14pt"> ROTDIF </span> <span style=
    37 "font-size:16pt;font-family:'Times New Roman'">program into</span><span style=
    38 "font-style:italic;font-size:16pt;font-family:'Times New Roman'"> <a href="http://genapp.rocks/" target=
    39     "_blank" style="color:#0000ff">GenApp</a></span> <span style=
    40 "font-size:16pt;font-family:'Times New Roman'">scientific framework was performed by Dr. Alexey
    41 Savelyev and Dr. Emre Brookes (pictured below, from left to right).
    42 Dr. Savelyev is a postoctoral research associate, and Dr. Brookes
    43 is an assistant professor at the <a href=
    44 "http://www.biochem.uthscsa.edu/" target="_blank" style="color:#0000ff">Department of
    45 Biochemistry</a>, University of Texas Health Science Center, San
    46 Antonio, TX.</span></p>
    47 <p class="_normal" style=
    48 "text-align:center;margin-bottom:8.000000pt;margin-top:0.000000pt"
    49 awml:style="_Normal"><img style="width:95.5mm; height:55.9mm"
    50 src="" title=""
    51 alt="" align=""></p>
     12"font-size:16pt;font-family:'Avenir'">ROTDIF-Web is made possible by the collaboration between researchers from University of Texas Health Science Center (UTHSC)
     13and University of Maryland (UMD).</span></p>
    5214
    53     <p></p>
    54     <p style="text-align:center;margin-bottom:0.000000pt;margin-top:0.000000pt">
    55     <span style=
    56     "font-size:12pt;font-family:'Times New Roman'"></span><img style="width:72.2mm"
    57     src=""  title="" alt="" align=""></p>
     15<p><span style="font-weight:bold;font-size:18pt;font-family:'Avenir'">Main Contributions
     16</span></p>
     17
     18<div style= "font-size:16pt;font-family:'Avenir'">
     19  <p>GenApp framework development: Dr. Emre Brookes@UTHSC</p>
     20  <p>ROTDIF integration: Yuexi Chen@UMD, Dr. Alexey Savelyev@UTHSC</p>
     21  <p>Feedback and suggestions: Dr. David Fushman@UMD, Andrew Boughton@UMD</p>
     22</div>
     23
     24<p><span style="font-weight:bold;font-size:18pt;font-family:'Avenir'">Funding
     25</span></p>
     26<div class="">
     27  <img src="https://drive.google.com/uc?id=1ldadw-cR_WgqeqzvnhHba_QCXfBuHyc1" width="150" height="150"></img>
     28  <img src="https://drive.google.com/uc?id=16xQfIud0tR1JcVXN6R3-ItoJm159q2dr" width="400" height="150"></img>
     29</div>
     30
     31<div style= "font-size:16pt;font-family:'Avenir'">
     32  <p>OAC-1739549 (to D.F.)</p>
     33  <p>OAC-1740087 (to E.B.)</p>
     34  <p>Science Gateways Community Institute (summer internship to Y.C.)</p>
     35</div>
    5836
    5937
    60 </div>
     38
     39 
  • files/official_disclaimer_my.html

    r1471 r1647  
    11<div style="width:850px;margin-left:100px;">
    2 <p><span style="font-weight:bold;font-size:20pt;font-family:'Times New Roman'">Disclaimer</span></p>
     2<p><span style="font-weight:bold;font-size:20pt;font-family:'Avenir'">Disclaimer</span></p>
    33
    44<p></p>
     
    77"text-align:justify;margin-bottom:0.0000in;margin-top:0.0000in;margin-right:0.0000in"
    88awml:style="Normal"><span style=
    9 "font-style:italic;font-size:16pt;font-family:'Times New Roman'">
     9"font-style:italic;font-size:16pt;font-family:'Avenir'">
    1010ROTDIF</span> <span style=
    11 "font-size:16pt;font-family:'Times New Roman'">is distributed "as is", without any warranty, including any implied warranty of merchantability or fitness for a particular use. The authors assume no responsibility for, and shall not be liable for, any special, indirect, or consequential damages, or any damages whatsoever, arising out of or in connection with the use of this software.
     11"font-size:16pt;font-family:'Avenir'">is distributed "as is", without any warranty, including any implied warranty of merchantability or fitness for a particular use. The authors assume no responsibility for, and shall not be liable for, any special, indirect, or consequential damages, or any damages whatsoever, arising out of or in connection with the use of this software.
    1212</p>
    1313</div>
  • files/welcome_my.html

    r1520 r1647  
    11 <div style="width:800px;margin-left:100px">
    2     <p><span style="font-weight:bold;font-size:20pt;font-family:'Times New Roman'">Welcome</span></p>
     2    <p><span style="font-weight:bold;font-size:20pt;font-family:'Avenir'">Welcome</span></p>
    33
    44    <p style="text-align:left;margin-bottom:0.000000pt;margin-top:0.000000pt"></p>
    55   
    6     <p style="font-size:16pt;font-family:'Times New Roman'">
    7     Welcome to ROTDIF, a package for processing, prediction, and rigid-body docking based on nuclear spin-relaxation!</p>
     6    <p style="font-size:16pt;font-family:'Avenir'">
     7    Welcome to ROTDIF, a package for processing, prediction, and rigid-body docking based on nuclear spin-relaxation data!</p>
    88
    99    <p style="text-align:justify;margin-bottom:0.000000pt;margin-top:0.000000pt">
    1010    <span style=
    11     "font-size:16pt;font-family:'Times New Roman'">
    12       The relaxation toolbox ROTDIF has several important capabilities.
    13       First, it consists of a new version of the ROTDIF program, which can now simultaneously analyze relaxation data for
    14       15N and 13C at several fields. The new ROTDIF 3.0 is orders of magnitude faster than the previous version, and is now able
    15       to accurately compute a fully anisotropic rotational diffusion tensor from a 250+ bond dataset in under 0.05 s. ROTDIF is also more robust,
    16       based on our simulations, when processing data with large conformational exchange contributions.
    17       Order parameters can also be rapidly computed. The toolbox also contains ELM3 and ELMDOCK, a program for ab initio prediction of the
    18       rotational diffusion tensor from molecular structure, and the
    19       associated docking program that orients and docks a two-domain system based on relaxation data. The prediction can be computed in less
    20       than 0.1 s, and docking can be performed within a few seconds on a standard laptop.
     11    "font-size:16pt;font-family:'Avenir'">
     12     ROTDIF-Web is a web-server that helps researchers investigate the amplitudes and time scales of internal motions in biological macromolecules (proteins and nucleic acids). On ROTDIF-Web, users can simultaneously analyze Nuclear Magnetic Resonance (NMR) relaxation data obtained at multiple magnetic fields and for different nuclei. ROTDIF-Web also includes powerful tools for ab initio prediction of rotational diffusion tensors from macromolecular structures and for building macromolecular complexes using rotational diffusion-guided docking. ROTDIF-Web incorporates all the features of portable ROTDIF 3.0 (written in Java) and extends data management and visualization features.
    2113    </span></p>
    2214
    2315    <p></p>
    24     <p> <u>If you use ROTDIF in your work, please cite: </u></p>
    25     <p style="color:#ffa500"> [1] Berlin K et al., Deriving quantitative dynamics information for proteins and RNAs using ROTDIF with a graphical user interface <span style="font-style:italic;font-size:14pt;font-family:'Times New Roman'"> J Biomol NMR </span> 2013 Dec;57(4):333-52 </p>
    26     <p style="color:#ffa500"> [2] Walker O et al., Efficient and accurate determination of the overall rotational diffusion tensor of a molecule from 15N relaxation data using computer program ROTDIF  <span style=
    27     "font-style:italic;font-size:14pt;font-family:'Times New Roman'"> J Magn Reson </span> 2004 Jun;168(2):336-45. </p>
     16    <p> If you use ROTDIF in your work, please cite: </p>
     17    <p style="color:#FFFFFF"> <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939081/" target= "_new">[1] Konstantin Berlin, Andrew Longhini, T. Kwaku Dayie, David Fushman, Deriving quantitative dynamics information for proteins and RNAs using ROTDIF with a graphical user interface, <span style="font-style:italic;font-size:14pt;font-family:'Times New Roman'"> J Biomol NMR, </span> 2013 ;57(4):333-52 </a></p>
     18    <p style="color:#FFFFFF"><a href="https://www.ncbi.nlm.nih.gov/pubmed/15140445" target="_new"> [2] Olivier Walker, Ranjani Varadan, David Fushman, Efficient and accurate determination of the overall rotational diffusion tensor of a molecule from 15N relaxation data using computer program ROTDIF,  <span style=
     19    "font-style:italic;font-size:14pt;font-family:'Times New Roman'"> J Magn Reson, </span> 2004;168(2):336-45. </a></p>
    2820 </div>
     21
     22
  • menu.json

    r1520 r1647  
    1919                }
    2020            ]
    21         }
    22         ,{
    23             "id"      : "demo_menu",
    24             "label"   : "How to Use",
    25             "icon"    : "pngs/noicon.png",
    26             "autorun" : "demo",
    27             "modules" : [
    28                 {
    29                     "id"    : "demo",
    30                     "label" : "About ROTDIF",
    31                     "nobutton" : "true"
    32                 }
    33             ]
    34         }
     21        },
     22#       {
     23#            "id"      : "demo_menu",
     24#            "label"   : "How to Use",
     25#            "icon"    : "pngs/noicon.png",
     26#            "autorun" : "demo",
     27#            "modules" : [
     28#                {
     29#                    "id"    : "demo",
     30#                    "label" : "About ROTDIF",
     31#                   "nobutton" : "true"
     32#                }]
     33#          },
     34          {
     35             "id"    : "tutorial_menu",
     36             "label" : "ROTDIF tutorial",
     37             "icon": "pngs/noicon.png",
     38             "autorun":"tutorial",
     39             "modules"   :[
     40                 {
     41                  "id"       : "tutorial",
     42                  "label"    : "ROTDIF tutorial",
     43                  "nobutton" : "true"
     44                 }
     45            ]
     46         }
    3547        ,{
    3648            "id"      : "Acknowledgements_menu",
  • modules/elm.json

    r1520 r1647  
    2424               {
    2525                    "role"       : "input"
    26                     ,"id"         : "projectname"
    27                     ,"label"      : "Project name"
     26                    ,"id"         : "run_name"
     27                    ,"label"      : "run name"
    2828                    ,"type"       : "text"
    2929                    ,"required"   : "true"
    30                     ,"help"       : "Enter a project name"
    31                     ,"specifiedproject" : "Run_"
     30                    ,"help"       : "Enter a name for this task"
    3231                },
    3332################################################################
     
    120119                   "role"  : "output",
    121120                   "id"    : "elm_out",
    122                    "label" : "Download ELM prediction",
     121                   "label" : "Download ELM prediction &nbsp",
    123122                   "type"  : "file",
    124123                   "multiple": "true"
     124                  },
     125                  {
     126                   "role":"output",
     127                   "id":"elm_params",
     128                   "label":"Download ELM parameters &nbsp",
     129                   "type":"file",
     130                   "multiple":"true"
    125131                  }
     132                 
    126133            ],
    127134
  • modules/elmdock.json

    r1552 r1647  
    1 # this is a module file, any module specific info belongs here
     1        # this is a module file, any module specific info belongs here
    22{
    33    "moduleid" : "elmdock",
     
    2424               {
    2525                    "role"       : "input"
    26                     ,"id"         : "projectname"
    27                     ,"label"      : "Project name"
     26                    ,"id"         : "run_name"
     27                    ,"label"      : "run name"
    2828                    ,"type"       : "text"
    2929                    ,"required"   : "true"
    30                     ,"help"       : "Enter a project name"
    31                     ,"specifiedproject" : "Run_"
     30                    ,"help"       : "Enter a name to run this task"
    3231                },
    3332################################################################
     
    145144                   #"append"  : "on",
    146145                   "cols"    : 40
    147                   },
    148 
    149                 {
    150                    "role"    : "output",
    151                    "id"      : "live_log",
    152                    "label"   : "Live Log File:  ",
    153                    "type"    : "html"
    154                 },
     146                  },
    155147                   {
    156148                   "role"  : "output",
     
    163155                  # "role"  : "output",
    164156                  # "id"    : "elm_out",
    165                   # "label" : "Download ELM prediction",
     157                  # "label" : "Download ELM prediction ",
    166158                  # "type"  : "file",
    167159                  # "multiple": "true"
     
    170162                   "role"  : "output",
    171163                   "id"    : "elmdock_out",
    172                    "label" : "ELMDOCK results",
     164                   "label" : "ELMDOCK results &nbsp;&nbsp;",
    173165                   "type"  : "file",
    174166                   "multiple": "true"
     
    177169                   "role"  : "output",
    178170                   "id"    : "pdb",
    179                    "label" : "ELMDOCK PDB file",
     171                   "label" : "ELMDOCK PDB file ",
    180172                   "type"  : "file",
    181173                   "multiple": "true"
    182                   }
     174                  },
     175                   {
     176                   "role": "output",
     177                   "id" :"outputpdb",
     178                   "label":"Docking View",
     179                   "type"  : "atomicstructure",
     180                   "height" : "850",
     181                   "width" : "850"
     182                   }   
    183183            ],
    184184
  • modules/rotdif_all.json

    r1525 r1647  
    2525               {
    2626                    "role"       : "input"
    27                     ,"id"         : "projectname"
    28                     ,"label"      : "Project name"
     27                    ,"id"         : "run_name"
     28                    ,"label"      : "run name"
    2929                    ,"type"       : "text"
    3030                    ,"required"   : "true"
    31                     ,"help"       : "Enter a project name"
    32                     ,"specifiedproject" : "Run_"
     31                    ,"help"       : "Enter a name to run this task"
    3332                },
    3433################################################################
     
    153152                   "role"  : "output",
    154153                   "id"    : "axi_out",
    155                    "label" : "Save PyMol Axes: axially symmetric",
     154                   "label" : "Saved PyMol Axes: axially symmetric model",
    156155                   "type"  : "file",
    157156                   "multiple": "true"
     
    160159                   "role"  : "output",
    161160                   "id"    : "ani_out",
    162                    "label" : "Save PyMol Axes: full anisotropic",
     161                   "label" : "Saved PyMol Axes: fully anisotropic model",
    163162                   "type"  : "file",
    164163                   "multiple": "true"
     
    174173                   "role" : "output",
    175174                   "id" : "vec_plot",
    176                    "label" : "Bond Vectors Plot",
     175                   "label" : "Bond Orientations Plot",
    177176                   "showcollapse":"False",
    178177                   "height": "450px",
     
    218217                   "role"  : "output",
    219218                   "id"    : "iso_plot",
    220                    "label" : "Isotropic Model:",
     219                   "label" : "Isotropic Model Fit:",
    221220                   "showcollapse": "False",
    222221                   "type"  : "plotly"
     
    224223                {  "role"  : "output",
    225224                   "id"    : "axi_plot",
    226                    "label" : "Axially Symmetric Model:",
     225                   "label" : "Axially Symmetric Model Fit:",
    227226                   "showcollapse": "False",
    228227                   "type"  : "plotly"
     
    230229                {  "role"  : "output",
    231230                   "id"    : "ani_plot",
    232                    "label" : "Fully Anisotropic Model:",
     231                   "label" : "Fully Anisotropic Model Fit:",
    233232                   "showcollapse": "False",
    234233                   "type"  : "plotly"
     
    236235                {  "role"  : "output",
    237236                   "id"    : "diso_plot",
    238                    "label" : "Dynamics: Isotropic Model:",
     237                   "label" : "Dynamics: Isotropic Model Fit:",
    239238                   "showcollapse" : "False",
    240239                   "type"  : "plotly"
     
    242241                {  "role"  : "output",
    243242                   "id"    : "daxi_plot",
    244                    "label" : "Dynamics: Axially Symmetric Model:",
     243                   "label" : "Dynamics: Axially Symmetric Model Fit:",
    245244                   "showcollapse" : "False",
    246245                   "type"  : "plotly"
     
    248247                {  "role"  : "output",
    249248                   "id"    : "dani_plot",
    250                    "label" : "Dynamics: Fully Anisotropic Model:",
     249                   "label" : "Dynamics: Fully Anisotropic Model Fit:",
    251250                   "showcollapse" : "False",
    252251                   "type"  : "plotly"
Note: See TracChangeset for help on using the changeset viewer.